
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

MODTERRAIN:  A PROPOSED STANDARD FOR
TERRAIN REPRESENTATION IN ENTITY LEVEL

SIMULATION

by

Dale L. Henderson

June 1999

Thesis Advisor: Arnold H. Buss
Second Reader: Leroy A. Jackson

Approved for public release; distribution is unlimited



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate o any 
other aspects of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations 
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
17 June 1999

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis

4. TITLE AND SUBTITLE
MODTERRAIN - A PROPOSED STANDARD FOR TERRAIN 
REPRESENATION IN ENTITY LEVEL SIMULATION

5. FUNDING NUMBERS

6. AUTHOR(S)
Henderson, Dale L.

7.  PERFROMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION 
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
US Army TRADOC Analysis Center
PO Box 8692
Monterey, CA  93943-0692

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this report are those of the author and do not reflect the official policy or position of the Department of 
Defense or the U.S. Government.

12.a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution is unlimited

12.b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
       This thesis develops a standard Application Programmer's Interface (API) for modular terrain representation. The API hides 
the details of a terrain representation from an entity level simulation, thereby enhancing interoperability and flexibility. 
Additional contributions include reduced development costs, enhanced flexibility for developers, and the use of a component 
approach applicable to future simulations. Three reference implementations are developed in the thesis representing widely 
used terrain representations. These prototypes consist of a standard set of terrain services that can be used by a simulation 
developer without any knowledge of the underlying implementation. The prototypes serve as references, proof of the concept, 
and as tools for comparison and analysis of existing terrain algorithms. We demonstrate this comparison with the JANUS and 
Modular Semi-Automated Forces (MODSAF) line of sight algorithms. This set of API implementations also allows emerging 
simulations to use different terrain formats at run-time without source code changes. The API developed in this thesis is the 
basis for a United States Army Modeling and Simulation standard nomination.
14. SUBJECT TERMS 15. NUMBER OF PAGES

82
16. PRICE CODE

17. SECURITY 
CLASSIFICATION 
OF REPORT
Unclassified

18. SECURITY 
CLASSIFICATION 
OF THIS PAGE
Unclassified

18. SECURITY 
CLASSIFICATION OF 
ABSTRACT
Unclassified

19. LIMITATION OF 
ABSTRACT

NSN 7540-01-280-550 Standard Form (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-2
i



ii



iii

Approved for public release; distribution is unlimited

MODTERRAIN:  A PROPOSED STANDARD FOR TERRAIN
REPRESENTATION IN ENTITY LEVEL SIMULATION

Dale L. Henderson
Captain, United States Army

B.S., United States Military Academy, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 1999

Author:

Dale L. Henderson

Approved by:

Arnold H. Buss, Thesis Advisor

Leroy A. Jackson, Second Reader

Richard E. Rosenthal, Chairman
Department of Operations Research



v

Abstract

This thesis develops a standard Application Programmer's Interface (API) for modular

terrain representation. The API hides the details of a terrain representation from an entity

level simulation, thereby enhancing interoperability and flexibility. Additional contribu-

tions include reduced development costs, enhanced flexibility for developers, and the use

of a component approach applicable to future simulations. Three reference implementa-

tions are developed in the thesis representing widely used terrain representations. These

prototypes consist of a standard set of terrain services that can be used by a simulation

developer without any knowledge of the underlying implementation. The prototypes serve

as references, proof of the concept, and as tools for comparison and analysis of existing

terrain algorithms. We demonstrate this comparison with the JANUS and Modular Semi-

Automated Forces (MODSAF) line of sight algorithms. This set of API implementations

also allows emerging simulations to use different terrain formats at run-time without

source code changes. The API developed in this thesis is the basis for a United States

Army Modeling and Simulation standard nomination.



TABLE OF CONTENTS
I. INTRODUCTION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Purpose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
B. Goal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
C. Overview of Army Modeling and Simulation Standards. . . . . . . . . . . . . . . . . . . . . 4
D. Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
E. Standards Nomination and Approval Process (SNAP)  . . . . . . . . . . . . . . . . . . . . . . 7
F. Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II. TERRAIN REPRESENTATION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A. Elevation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B. Features Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
C. Terrain Model Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

III. THE LINE OF SIGHT ALGORITHM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A. LOS Algorithm Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
B. Get Elevation Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
C. Existing line of sight (LOS) algorithms.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

IV. THE APPLICATION PROGRAMMERS INTERFACE  . . . . . . . . . . . . . . . . . . . . . 33

A. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B. Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
C. Low Level Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
D. Meta Data Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
E. Basic High Level Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
F. Advanced High Level Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

V. REFERENCE IMPLEMENTATIONS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A. Terrain Representation Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B. API Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
C. Example Experiment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
D. Comparison of terrain sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

VI. CONCLUSIONS AND RECOMMENDATIONS  . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A. Use of Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
B. Nominated Terrain Standard  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
C. Web Based Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
vii



TABLE OF CONTENTS
APPENDIX A. THE JANUS TERRAIN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A. JANUS Representation Scheme  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B. Polygonal Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
C. Feature sub-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

APPENDIX B. MODTERRAIN SOURCE CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
viii



ix

LIST OF FIGURES

Figure 1.  Develop - Test - Develop Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2.  Elevation Posts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3.  Elevation Grid Cells  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 4.  One to One and Onto Mapping Between Feature Sets  . . . . . . . . . . . . . . . . . . 17
Figure 5.  Overloaded Mapping to a Feature Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 6.  Mapping Using a Master Feature Set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 7.  The JANUS Get Elevation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 8.  The ModSAF Get Elevation Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 9.  Nearest Post Get Elevation Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 10.  The Southwest Corner Get Elevation Method  . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 11.  JANUS Line of Sight After Ref. [2]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 12.  DYNTACS LOS After Ref. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 13.  ModSAF Line of Sight After Ref. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 14.  Bresenham Line of Sight After Ref. [2]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 15.  Traditional Terrain Component Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 16.  Simulation Design Using an API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 17.  API Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 18.  Alternative Implementation of API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 19.  Terrain Sheet Generated Using ModSAF . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 20.  Terrain Sheet Generated Using JANUS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 21.  Terrain Sheet Generated Using Nearest Post  . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 22.  Analytic Surface Sampled at Terrain Resolution  . . . . . . . . . . . . . . . . . . . . . 53
Figure 23.  Analytic Surface Over Sampled at Four Times Terrain Resolution . . . . . . . 54



Executive Summary

This thesis develops a standard Application Programmer's Interface (API) for modular

terrain representation. The API hides the details of a terrain representation from an entity

level simulation. Separating terrain interface from implementation in this manner

enhances simulation interoperability, reduces development costs, and enhances flexibility

for developers of Department of Defense simulation models. Development of the interface

included examination of the existing body of simulation terrain components and the litera-

ture on simulating terrain. 

In this research we found a small set of critical terrain services common to all of the

existing terrain simulation techniques. The interface attempts to capture those functions

that are common to a majority of these legacy simulations. The interface divides these

functions into high and low level. The thesis documents these high level and low level ser-

vices by defining method names, parameters, return types, and explanations. Low level

services provide access to the underlying terrain data structure while high level services

provide answers to model questions like line of sight and movement. As a default, these

are written in terms of low level services, and the use of an API permits selective exten-

sion and replacement of specific functions without re-engineering the entire terrain com-

ponent. The API data structure defines the default variable types used by compliant

implementations. 

The thesis includes three functioning prototype implementations of the API based on

the geometric methods used by the JANUS, Modular Semi-Automated Forces, and

CASTFOREM simulations. The API makes it possible to use identical terrain representa-
xi



tions in comparing algorithms such as line of sight calculations. The thesis recommends

further experimentation using the prototypes, use of the prototypes as components in a

modular simulation architecture, and extension of the concept of components to other

classes of simulation problems. The thesis is the basis for a United States Army Modeling

and Simulation standards nomination.
xii
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Just beyond the town there were two hills. One was wooded and

green; the other was flat, topped by a cemetary. The Union commander, a

tall blond sunburned man named John Buford, rode up the long slope to

the top of the hill, into the cemetary. He stopped by a stone wall, looked

down across the open flat ground, lovely clear field of fire...[1]
xiv



I.  INTRODUCTION

Terrain has had a pivotal impact on the outcome of combat actions for all of

recorded history. Consequently, military leaders have studied terrain since antiquity. In

modern times researchers have attempted to capture those aspects of terrain that are criti-

cal to determining combat outcomes and to develop ways to simulate this impact.

Buford’s decision to secure the ridge overlooking Gettysburg is only one of count-

less military decisions made throughout history in which terrain figured decisively. Had

the same forces fought the battle of Gettysburg on different terrain, the outcome might

have been far different. Hence there is some consensus among simulation developers that

no entity level model of ground combat can be complete or properly balanced without rep-

resenting the impact of terrain. The environment impacts nearly every aspect of combat

[2].

A. PURPOSE

Existing and legacy entity level computer generated forces (CGF) simulations are

complex and tightly coupled to their terrain components. This thesis develops a standard

Application Programmer's Interface (API) for modular terrain representation. The API

hides the details of a terrain representation from an entity level simulation. The standard

modular terrain interface contributions include advances in simulation interoperability,

reduced development costs, enhanced flexibility for developers, and the use of a compo-

nent approach applicable to future simulations. In addition to the interface design, refer-

ence implementations are developed for this thesis. These prototypes consist of a standard

set of terrain services that allow a simulation developer to use a set of common terrain ser-

vices without any knowledge of the underlying terrain representation. 

The API developed in this thesis is the basis for a United States Army modeling

and simulation standard nomination. This standard nomination is the aim of the ModTer-

rain project that is part of the TRADOC Analysis Center Fiscal Year 1999 research plan.

The thesis directly supports the United States Army Modeling and Simulation Office
1



(AMSO) terrain standards category by developing an API for terrain representation in

CGF simulation [3].

B. GOAL

The ultimate thesis goal is to develop a software interface that contains a complete

set of services for modeling terrain. Prototype implementations of this interface demon-

strate that simulation developers may choose from a number of terrain models by simply

writing calls through the API. In short, the goal is to abstract the terrain implementation

details from the simulation and the simulation developer. The development phase of the

API included a thorough review of the existing analytical simulation terrain representation

methodologies. The current version of the API is the consequence of iteration on the early

draft specifications presented to the Army M&S community for review in late 1998 and

early 1999. These draft and subsequent revisions to the API were an attempt to break

down those aspects of terrain, terrain services, and terrain simulation that were common to

at least 90% of the simulations examined in the literature. Software, algorithms, and inter-

faces developed and prototyped in this thesis will be applicable to most existing simula-

tions and useful to the entire M&S community. 

In this thesis we: 

• develop the first versions of the API - These versions of the API were dissemi-
nated to several Army M&S organizations for review. This iterative process of 
API design and review builds consensus for the final product.

• provide a foundation on which to base the standard - The API standard should 
be based on an examination of the literature and the large body of legacy simu-
lations. From this examination we were able to distill the fairly small number 
of critical functions common to all entity simulations that use terrain. This pro-
duced a broadly applicable, yet compact specification in the end.

• document the research leading to the nomination - By coupling a thesis to the 
development of a standard nomination, we were able to capture the back-
ground and decision making processes that led to the overall design of the 
specification.

• prototype reference instances of the API for immediate study - The prototypes 
developed in this thesis are functioning implementations of the API. Their 
development proved that it is possible to abstract terrain. They exist now for 
further development, exploration, and experimentation. 
2



• create possibilities for further research - The existing reference implementa-
tions are tools for simulation research, comparison of terrain methodologies, 
and demonstration. A major demonstration of the API is scheduled for mid 
1999.

This process of develop - test - develop began in the fall of 1998 and is ongoing. It

is described in Figure 1 below.

Figure 1. Develop - Test - Develop Process

This thesis is the foundation of the ModTerrain project whose goals are:

• to provide simulation composability, 

• to support improved simulation interoperability, 

• to reduce simulation development costs, 

• to support other modeling and simulation standards, 

• to provide flexibility for simulation developers, 

• to allow for high performance implementation, and 

• to foster innovation in future simulations [3].

Review Literature &
Legacy Simulations

Draft
Standard

Community
Review

Update
Standard

Prototype
Standard

Experiment

Update
Standard
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C. OVERVIEW OF ARMY MODELING AND SIMULATION STANDARDS

The United States Army uses modeling and simulation in three distinct but related

domains:

• Training, Exercises & Military Operations (TEMO),

• Research, Development & Acquisition (RDA), and

• Advanced Concepts & Requirements (ACR) [4].

The world of Army modeling and simulation encompasses a broad array of simu-

lations that are built on an equally broad array of modeling methodologies. This host of

methods, simulations, interfaces, representations, and models has grown over several

decades of model development, reliance on model output, and the iterative and progres-

sive validation of modeling methods. Three categories of simulation are used by DoD:

live, constructive, and virtual.

Live simulations are those carried out by real soldiers operating real equipment fir-

ing either live engagements at targets or simulated engagements at each other. The best

example of a live simulation is the National Training Center (NTC) in the Mojave Desert

in California. Here leaders, staffs and soldiers participate in brigade and battalion level

force on force exercises using real weapons fitted with the multiple integrated laser

engagement system (MILES). MILES resolves all direct fire engagements. Indirect, air-

to-ground, mine and other attrition events are also modeled in the exercise. As described

in the Combat Training Center Handbook, “units, equipped with Weapons Engagement

Simulation Systems, conduct training in areas containing sophisticated data collection and

recording systems that provide a record of engagement for review, analysis, and use in

planning and conducting training upon return to home station [5].”

Virtual simulations are high fidelity digital representations of combat presented to

the soldier, leader, or staff in some form of synthetic or simulator environment. The most

obvious example of a virtual simulation is the flight simulator. Flight simulators present a

pilot or flight crew with a convincing representation of the outside world viewed from

within a functional mock-up of their aircraft cockpit. Virtual simulation permits repetitive

training of dangerous or expensive procedures. Examples include complex malfunctions,
4



emergency procedures or expensive missile gunnery. The virtual domain is almost exclu-

sively used for training, although some advanced concepts testing and human factors

experimentation use virtual simulations. 

Constructive simulations are those that take input on the environment, systems,

processes, and interactions of combat, use these inputs to generate outcomes, and provide

the analyst with output based on these outcomes. Constructive simulations fall into two

general classes: aggregated and entity-level.

An example of a constructive simulation used for training is the Battle Command

Training Program (BCTP) Based at Fort Leavenworth, Kansas. Part of this program is a

constructive simulation called a “War Fighter Exercise” (WFX). The exercise uses the

Corps Battle Simulation (CBS). The WFX is conducted at the unit's home station. 

“Division, Brigade, and Corps Tactical Operations Centers (TOCs) deploy
to field locations, normally within 15 km of the installation's BSC. Inside
the BSC unit players simulate the subordinate units of the corps/division
and fight the battle using the CBS. BSC players communicate with their
higher headquarters using doctrinal means of communication only, making
the simulation transparent to the commanders and staffs [5].” 

D. CHALLENGES

Recent constrained budgets along with marked gains in computer technology have

driven increased reliance on simulation in the live, virtual and constructive domains. The

increased demand for simulation to fill an expanding set of roles led to a situation in the

early 1990s in which overlapping, vertical, non-standardized development threatened to

fragment efforts to develop timely, accurate, inexpensive, and useful simulations. As

noted by McGlynn and Timian, “we examined the current state of the Army's M&S envi-

ronment, or more simply put, where we were. Then we articulated the desired state, or

where we wanted to be, in the form of an objective M&S environment. We then set about

establishing a course of action to bridge the gap between the current state and the desired

state [6].” This examination and analysis led to the development of the standards nomina-

tion and approval process (SNAP) and the Model and Simulation Resource Repository

(MSRR). Critical to the success of this effort to create a process for modeling standards

was its broadly defined objective “to create an environment that promotes the sharing and
5



reuse of M&S Standards procedures, practices, processes, techniques, algorithms, or heu-

ristics [7].” In so defining the process, Army leaders and analysts avoided the formation of

a rigid authoritative organization and maintained the leverage inherent in a system that

eliminates the boundaries between the military, industrial, and academic development of

models and simulations. 

Within SNAP existing standards are classified as draft, approved, or mandatory

and are maintained in these 19 different standards categories:

• Acquire,

• Architecture,

• Attrition,

• C4I Integration,

• Command Decision Modeling,

• Communication Systems,

• Cost Representation,

• Data,

• Deployment/Redeployment,

• Dynamic Atmospheric Environments,

• Functional Description of the Battlespace,

• Logistics,

• Mobilization/Demobilization,

• Move,

• Object Management,

• Semi-Automated Forces,

• Terrain,

• Visualization, and

• Validation Verification & Accrediation [7].

The ModTerrain project directly addresses standards requirements for the terrain,

semi-automated forces (SAF), and object management categories.
6



The terrain standard category “establishes standards for the objects, algorithms,

data, and techniques required to represent terrain and dynamic terrain processes in model-

ing and simulation [3].”

The semi-automated forces category “includes software integration that produces

realistic entities in synthetic environments that interface appropriately with live, construc-

tive and simulator entities, but which are generated, controlled and directed by computer

routines [3].”

The object management category “is involved with the process that develops

abstract object classes that are consistent in their representation of object attributes/meth-

ods, applicable to 95% of the M&S employing objects, understood by the M&S commu-

nity, and interoperable at levels allowed by their model environment [3].”

E. STANDARDS NOMINATION AND APPROVAL PROCESS (SNAP)

The Army uses a seven step process, SNAP, to develop M&S standards [8]. These

steps are:

• Build Teams,

• Define Requirements,

• Develop Standards,

• Achieve Consensus,

• Obtain Approval,

• Promulgate Standards, and

• Educate.

The current state of the ModTerrain project is the development of the standard.

Prototyping and working models will assist in the development of consensus and the reso-

lution of interoperability and other issues from the broader community. The ModTerrain

API is unlikely to evolve into a rigid, mandatory standard applicable across the entire

spectrum of M&S activities. Rather it is being deliberately developed as a flexible, open

framework for enabling simulation developers to build on existing terrain representations

and services.
7



F. ORGANIZATION

The remainder of this thesis contains a discussion of terrain representation, a

description of the ModTerrain API standard, documentation of the reference implementa-

tion, and examples of some experimentation permitted by the reference implementation.

Chapter two describes some of the general methods of representing terrain eleva-

tion models and terrain features models. We examine different terrain representations for

illustration and comparison with emphasis on explicit regular gridded terrain elevation

representations. Finally we look at the general information a typical analytic simulation

model requires of a terrain representation.

Chapter three describes in detail the structure of the most common analytic line of

sight methods. The line of sight algorithm is broken down into constituent subroutines,

and the DYNTACS, JANUS, ModSAF, and CASTFOREM line of sight methodologies

are explained. 

Chapter four is a complete description of the Application Programmer’s Interface.

It lists the object hierarchy and the low-level, high-level, and meta services specified by

the API along with parameters, return-types, and brief descriptions.

Chapter five is a description of the reference implementation developed for this

thesis. This reference implementation includes three instances of the API modeled on the

geometric terrain services provided in the JANUS, ModSAF, and CASTFOREM simula-

tions.

Chapter six is a series of recommendations for further research using the tools

developed in this research. These include the continued use of the prototype for explora-

tion, the incorporation of the prototype into component based simulations, and the exten-

sion of the process of component abstraction to other classes of simulation problems.
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II.  TERRAIN REPRESENTATION

All entity level simulations, even board games and rehearsal tools, make use of

some kind of terrain model. At one end of the terrain model spectrum are “sand tables.”

These are crude scaled down mock-ups of an operation constructed from materials at

hand. Commanders and staffs in small units use sand tables principally for mission

rehearsal and war gaming because they help leaders to visualize terrain, spatial relation-

ships and the progression of the tactical plan thorough time [2]. At the other end of this

spectrum are high fidelity digital virtual representations. The Military Operations in Urban

Terrain [MOUT] training facility is a terrain model of a general urban setting that might be

used in a live simulation. Similarly, the National Training Center [NTC] is a general desert

terrain model. Special operations forces occasionally use faithfully replicated building and

airplane mock-ups for live training and mission rehearsal. In military board games a scale

terrain board with an overprinted grid and relief data represents terrain. Terrain character-

istics in these board game models are usually aggregated to the level of resolution of the

grid cell. 

A terrain representation is distinguished from raw terrain data by at least one level

of processing and is stored so that a specific simulation can access it directly. A terrain

representation is normally generated from raw data for use by the simulation or generated

by some landform surface generating algorithm. The terrain representation is then stored

in a format that can be accessed directly by the simulation. Such formats include pointers,

headers, meta-data and an array structure of x coordinate, y coordinate, and z coordinate

(elevation) values. The actual structure of these arrays varies by simulation. The inter-

change of data between different simulations is the subject of the Synthetic Environment

Data Representation and Interchange Specification (SEDRIS). The goal of the SEDRIS

project is to provide a common representation model and provide an interchange mecha-

nism between terrain representations from different simulations [9].
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A complete terrain representation requires consideration of both a terrain elevation

model and a terrain features model. In the next sections we will examine the types of ele-

vation and feature models common in existing simulations. 

A. ELEVATION MODELS

In general, elevation data are stored as an array of numerical values that represent a

uniform, discrete sample of the terrain surface. An individual element in this array is

known as an elevation post. Most existing representations use regular, square grids of ele-

vation posts. Others use regular rectangular, triangular or hexagonal representations.

These representations are called regular gridded networks (RGN). The most general case

of an explicit terrain representation uses irregularly spaced elevation posts that generates a

terrain mesh of non-uniform triangular facets. These representations are known as Trian-

gulated Irregular Networks (TIN). TINs may be generated from a regular gridded network

by selectively removing elevation posts using thinning algorithm. 

The underlying array of elevation posts is a discrete representation of the continu-

ous real world. One may conceptualize progressively higher and higher resolution terrain

representations, but at any level there are an infinite number of "holes" between every two

posts. 

The only polygons capable of mapping without overlap to a regular grid are uni-

formly sized squares, rectangles, triangles, or hexagons. Squares are used most commonly

in digital representation [12]. The advantage of regular gridded networks is the simplicity

of finding a post near or at a specific location. Given the extent and resolution of the grid,

the calculation to find the element or elements nearest to a general point is trivial. The ele-

ments may be stored in a one dimensional array, and the explicit x and y coordinates may

be either stored or calculated at run time. A general location of interest will always be

bounded by a polygon whose vertices consist of points of known elevation. Once the

bounding polygon is found these elements may be used to interpolate the elevation of the

general point contained within the bounding polygon. In a TIN this method of pulling the

bounding polygon from a node list is more complex, but the methods used for determining

the elevation of the location in question are similarly trivial.
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The elevation at the exact coordinates of an elevation post is stored explicitly in

the terrain elevation database and may be easily obtained. However, the elevation of a

location offset from a post must be approximated at run time. The need to repeatedly poll

the terrain representation for elevations is a large computational burden. By some esti-

mates the more complicated JANUS line of sight (LOS) algorithm is three times slower

than a simple nearest post LOS algorithm [12]. The subroutine for determining elevation

is an important component of this algorithm, and the implementation of a software method

for determining the elevation of a general point within the boundaries of the terrain repre-

sentation is critical to efficient, useful simulation. 

Some simulations simply return the elevation of the nearest post to the point in

question. Some perform more complex arithmetic to estimate an elevation. Those that

return the elevation of the nearest post are sometimes called “grid cell” or “nearest square

methods [12].” More complex algorithms, like those used by ModSAF and JANUS, return

an interpolated value for the elevation. Elevation models fall into the broad categories of

explicit, analytic, and hybrid. These are described in the next sections.
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1. Explicit Representations

Any explicit representation of terrain must consist of some systematic arrangement

of elevation data. The individual element in this set is called an “elevation post.”

Figure 2. Elevation Posts

 Alternatively, these posts may be viewed as grid “cells” of known elevation. 

Figure 3. Elevation Grid Cells

Explicit representations may be geo-specific or geo-typical. Geo-specific terrain is

developed by sampling elevations somewhere on the earth’s surface. It is commonly used
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when we wish to study a known area for which elevation data exist. Geo-typical terrain

representations are usually built from algorithms that invoke Gaussian or trigonometric

formulae to generate a smooth surface. These functions are generally parameterized so

that they produce a landform with desired characteristics that are typical of some portions

of the earth’s surface, but specific to none.

2. Analytic Representations

Models that use analytic terrain representations use similar functions to represent

the surface. However, an analytic representation invokes the representative surface gener-

ating function for an elevation value at run time instead of querying a pre-processed data-

base of terrain posts. These methods generally alleviate storage requirements, add some

computational burden, and permit “exact” rather than interpolative determination of the

elevation of the terrain sheet at a specific point. They do not permit the incorporation of

real world data. An example is the Variable Resolution Terrain Algorithm. This algorithm

builds a terrain surface from the superposition of a number of hills whose parameters are

determined stochastically within a range corresponding to the overall terrain characteris-

tics desired [11].

3. Hybrid Representations 

One may conceive of a representation in which known elevation posts are used as

initial conditions for surface generating equations that can fill in the spaces between them.

As an example, sand dunes tend to be found in relatively large fields of regularly spaced,

similarly shaped dunes. Because of the low resolution in many explicit representations an

individual dune would not likely be represented in a typical terrain elevation database. A

hybrid representation can bring the dunes into existence for the associated combat model. 

4. Comparison of Regular and Irregular Representations

The overriding disadvantage of regular terrain grids is that they are wasteful of

storage space in cases where large areas of terrain are of nearly identical elevation. The

general TIN representation is a more efficient method of depicting the actual contour.
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However, the advantage of the regular network is that it is both easily generated from

existing data that are generally stored in regular grids and that the logic for using a regular

network is much simpler than the logic for using an irregular network. The DTED prod-

ucts are a uniform matrix of terrain elevation values that provide basic quantitative data

for systems and applications that require terrain elevation, slope, and/or surface roughness

information [12]. These data exist for the entire earth at various levels of resolution and

general methods of storage and retrieval are easily implemented and translated. Transla-

tions between different representations, datums, and coordinate systems are easily imple-

mented. 

The elevation model provides only a limited view of the terrain. A complete terrain

picture requires features. Feature representation is the subject of the next section.

B. FEATURES MODELS

The simplest terrain representation makes use only of elevation data. This is some-

times called a “bald earth” representation [11]. An array of x, y, and z coordinates is suffi-

cient to specify the entire terrain mesh. However, entities interact with more than just the

ground underneath them. The real world environment is filled with features that impact

behaviors, interactions, and combat outcomes. These influences include breaking line of

sight and impacting mobility. The terrain grid alone is likely too simple a model to provide

credible results. Terrain representation must also permit the modeling of terrain features.

The richness of this feature set depends on the simulation requirements. A driving force

behind the feature data study cited above was the “need for a more precise understanding

of the cultural and natural feature impacts on LOS prediction [12].” Features are often

classified as point, linear, or area [9]. These classes are described below.

1. Point Features

Point features are natural or man-made objects, like buildings, towers, or individ-

ual trees, that may be adequately located in the terrain representation by a single point in

space. The feature carries information about its physical extent and interaction behaviors

as parameters. While the virtual representation must create an adequate sensory image
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from these data carried by the feature, the constructive model need only carry feature

parameters needed by the underlying simulation methodology. In a regular gridded net-

work these point features may be placed accurately at general positions or offset from their

real positions and placed coincident with elevation posts. Similarly a TIN may define a

post at the location of each point feature or simply place the point features at general loca-

tions not associated with a vertex in the network.

2. Linear Features

Linear features include roads, rails, waterways, power lines, and similar terrain

elements whose spatial properties may be adequately modeled as one-dimensional. Often

these objects carry information like lane width, surface type, and water depth as parame-

ters rather than as explicit geometric information. Linear features models, like point and

area feature models, have a conflict between the virtual simulation’s requirement for data

to support visual models and the constructive simulation’s requirement for data to support

analytical models as point feature models.

3. Area Features

Area features contain information about a region with extent in more than one

dimension. Forested areas, swamps, general urban terrain, and lakes are examples. These

features may be defined by a list of posts, a list of coordinates defining a bounding poly-

gon, or as an attribute of a defined region of the elevation model such as a triangular facet

in a TIN. 

4. Scope of the Feature Representation

The range or richness of the set of terrain features represented is dependent on the

needs of the underlying simulation methodology. One major consequence of this varying

need for feature data over the current family of simulations is a tight coupling between ter-

rain representation and simulation. The variety of feature data used by simulations nearly

rivals that found in commercial geographical information systems (GIS).
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Feature representation is an area in which legacy, contemporary and proposed ter-

rain representations diverge dramatically. Additionally, the needs for feature data vary

widely by intended use of the terrain representation. For example, consider the representa-

tion of a building. A virtual visualization requires data like color, reflectiveness, lumi-

nance, and surface texture. In fact extremely high-resolution representations of complex

features like buildings require a large and specifically defined data structure. In contrast, a

building may be represented adequately in a constructive simulation by a short list of data

elements, such as its corner locations, and height. There are many enumeration scheme

standards and libraries for features data. An example is the Military Specification for Vec-

tor Smart Map [10]. This specification includes a nearly exhaustive list of terrain feature

types and sub types. The focus of the specification is on cartographic products like maps

and navigational charts, so the feature set is organized into “thematic layers” that are an

reflective of the art of map making rather than the art of simulation. Each enumeration

scheme tends to be highly representative of the needs of the team who built the representa-

tion. One of the goals of the SEDRIS project is a set of mappings between many of these

feature enumerations. 

Adding to the complexity of feature representation is the notion of an exhaustive

enumeration of feature types. Legacy simulations attempt to capture a large enough set of

feature attributes to allow for a detailed simulation methodology while remaining within

speed and storage constraints. These restrictions on the scope of terrain attributes led to

restrictions on the simulation methodologies that were dependent on the terrain. Move-

ment modifiers in the JANUS representation are carried only for three broad classes:

wheeled, tracked, and dismounted entities. This places a limit on any modification to the

movement algorithms employed by the simulation. Any proposed enhancement requires

altering the underlying terrain representation that renders the existing body of terrain rep-

resentations obsolete. In the next section we examine the major ways in which simulations

use terrain representations.
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5. Mapping Between Representations

Mapping between feature representations in different terrain models is one of the

most difficult problems facing the API design. An exhaustive set of one to many and com-

plementary many to one mappings between terrain representations is not necessary

because some simulations are designed to operate alone. Mapping rules may be devised

which permit a useful interaction of any two specific simulations even if some loss, round-

ing, or generalization is necessary in one or both directions. Ideally, this mapping between

feature sets is mathematically “one to one and onto” as shown in Figure 4. For each ele-

ment of the first set there is exactly one, and only one, corresponding element in the sec-

ond set. Typically these one to one and onto mappings are not possible. In fact among

legacy systems there are no two simulations that use identical feature sets, so running the

simulations together, each using its own feature set, permits the situation shown in Figure

5.   

Figure 4. One to One and Onto Mapping Between Feature Sets

In Figure 5, the mapping to one feature in the set is overloaded. Note that the arrow

from feature 2a to feature B is one-way. This implies that once a feature of type “2a” has
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FEATURE 3
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FEATURE B

FEATURE C

FEATURE A

TERRAIN 2
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been mapped to a feature of type “B” in the other representation, it’s identity as a “2a” fea-

ture can never be recovered deterministically.   

Figure 5. Overloaded Mapping to a Feature Set 

   Even if a master feature super-set, encompassing every conceivable feature type

and sub-type in every simulation in existence were built, and even if all simulations were

required to map into this feature set, the problem would exist. Consider Figure 6. 

Figure 6. Mapping Using a Master Feature Set

In Figure 6 the master feature set is placed between the two run time terrain repre-

sentations, but mapping from Terrain 2 back to Terrain 1 still mislabels all instances of

feature type “2a” in Terrain 1 as feature type “2.” The insight gained from this sort of anal-

ysis is valuable because it limits the scope of the API. In the prototypes developed in the

thesis, the feature object is kept abstract enough to permit its instantiation as a representa-

tion of nearly any feature from an existing or future feature set. At the same time this fea-

ture object was designed to be both “thin” and “flexible.” Thin refers to the small number

of instance variables and methods associated with the feature object. Flexibility is a conse-
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quence of the object oriented approach to the prototype implementation. This approach

permits the extension of the feature object through inheritance. 

C. TERRAIN MODEL USAGE

The degree to which the simulation uses terrain drives the development of the rep-

resentation. One of the major stated goals of this thesis is to show that the tight linkage

between terrain and simulation may be de-coupled through an abstracting interface. The

places where terrain and simulation interact most frequently are described below.

1. Intervisibility, Detection, Acquisition

An entity level simulation will interact with its terrain representation most fre-

quently to resolve intervisibility, acquisition and detection outcomes. In fact these services

are a tremendous user of computational resources and together serve to constrain the reso-

lution and manner of terrain use. Further, the entity by entity intervisibility polling

requirement has driven most of these simulations to employ a time step or hybrid time step

and discrete event methodology. A standard set of terrain services and a compliant terrain

representation must permit efficient access to and resolution of these questions of geome-

try with respect to the terrain grid. Further, since “bald-earth” representations are not

likely to be adequate, the impact of feature data on these questions must also be repre-

sented in an efficient manner.

2. Movement

After intervisibility, movement is the next most demanding consumer of terrain

information. The physics of movement and the impact of terrain on movement are well

understood and modeled in high resolution engineering simulations. Relevant data on ter-

rain material, soil type, moisture, tree spacing and diameter are available. Their impact on

movement is well modeled. As a result many simulations model the impact of terrain and

weather on the movement of an individual entity with a great deal of resolution. Any stan-

dard set of terrain services must provide efficient access to the type of information these

algorithms require. 
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3. Visualization

Although user interfaces are not simulations, visualization of the terrain model and

the interaction between entities in a simulation is critical to extracting useful information

from the simulation. A standard set of terrain services and a compliant representation will

permit visual representation of the underlying analytical model. If the underlying model is

a highly simplified version of the terrain, the visualization of it should not imply a more

detailed representation. On the other hand if the purpose of visualization is to enhance

realism or training effect, then the visualization software should be able to construct and

populate a realistic scene from a sparse analytical terrain representation.

4. Other Uses

A well designed modular terrain component permits increased complexity in a

modular way in areas where such complexity is needed. Aerosols, weather, and dynamic

terrain elements, are all areas left open to enhancement by the design of the API. This

openness is a critical design element of the API. Within the API the implementer is free to

use existing functions or write others.

The most algorithmically intensive question, and one that has been studied exten-

sively, is the question of line of sight. This is the subject of the next chapter.
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III.  THE LINE OF SIGHT ALGORITHM

This chapter describes the components of the geometric line of sight algorithm. It

gives a detailed description of some well known line of sight methods which are the basis

for the prototype implementations of the API. First the underlying methods of determining

the elevation of an arbitrary point are described, then the line of sight algorithms that use

this elevation value are exposed. This chapter touches on four established line of sight

methods: Dynamic Tactical Simulation (DYNTACS), Modular Semi-Automated Forces

(ModSAF), JANUS, and CASTFOREM.

If an entity level simulation requires interaction between entities, and if that simu-

lation represents the effect of terrain, then it requires some method of determining whether

an unbroken geometric line of sight between any two given entities or locations exists.

This algorithm serves as a basis for determining whether a detection occurs or a direct fire

engagement is possible. Further, this algorithm must posses certain characteristics to be

useful in practical application. Among these characteristics are accurate output, repeatable

results, computational simplicity, modest storage and retrieval overhead, and ease of

implementation.

Accurate output refers to the need for the simulation to produce results that reflect

sufficiently identical outcomes to those that would be encountered by identical systems

operating on the real terrain modeled in the database. Repeatable results are easy to obtain

in strict geometric models, but the notion may be extended to obtaining like or similar

results in a statistical sense from different runs in a stochastic analytical model. The need

for computational simplicity has driven most implementations of line of sight algorithms

to trade accuracy for speed. 

Computational complexity for the line of sight problem is polynomial in the num-

ber of entities, or n-squared; however, computational experience has shown that the line of

sight algorithm is often the single largest consumer of processor resources in an entity

simulation [15]. The extensive use of heuristics to reduce the number of required calls to
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the line of sight algorithm leaves a problem that is still fundamentally polynomial and too

computationally expensive for a modest number of entities. 

Modest storage and retrieval overhead is related to computation efficiency, but is

focused on the way the terrain model is represented, stored and retrieved. Increasing the

resolution of the underlying terrain database is also an n-squared problem. A twenty-kilo-

meter square regular grid of one-hundred meter elevation posts contains forty thousand

elevation posts. Increasing that resolution to ten-meter intervals requires four million

posts. In the case of irregular elevation grids, rapid database queries to provide elevation

data become critical to the speed of the line of sight algorithm. 

Ease of implementation is desirable because it allows simple prototyping, layered

complexity and meaningful documentation. Further, ease of implementation enhances of

verification. 

The remainder of this chapter will consider line of sight algorithm components,

several different methods for determining elevation, and finally, some established line of

sight algorithms which use these elevation methods. 

A. LOS ALGORITHM COMPONENTS

Consider a simulation of a battle between a force of x entities and a force of y enti-

ties. Let n be the sum of x and y, the total number of entities simulated. To a large extent

the events in the simulation will be driven by detections, which will be predicated on line

of sight. This requires a poll of each entity for its current line of sight status to every other

entity at each time step or event in the simulation. As the number of entities increases, this

problem grows with the square of the number of entities. Hence, for practical purposes

simulations must make use of some filters and heuristics to decrease the number of

instances in which the full LOS calculation must be invoked. In other words, the simula-

tion developer must reduce, by some reasonable means, the number of entities that require

resolution of the line of sight question for a given situation or time step. Otherwise, the

simulation becomes overburdened with solving the line of sight question between every

sensor-target pair. The simplest heuristic is to assume a maximum detection range and

eliminate sensor-target pairs whose range exceeds this maximum. 
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The algorithm also needs a method for returning the elevation of an arbitrary point

in the terrain database. The general structure of algorithms is to sample a set of points

along the sensor target line and determine if any one point has a higher elevation than the

actual sensor target line. Some algorithms sample only the nearest elevation posts to the

sensor-target line. Others compare slope instead of elevation [15]. In a well-designed

algorithm the function will halt and return “false” at the first indication that line of sight

has been broken. 

The final step in determining sensor-target LOS is determining whether features

interposed between sensor and target prevent line of sight. Theoretically a sufficiently

detailed feature representation allows geometric calculation of line of sight through the

feature, but processor and storage issues have led most legacy simulations to use probabi-

listic methods. If geometric line of sight exists, a probability of line of sight is determined

based on the number, type, and extent of features along the sensor-target line. We next

examine several methods to get the elevation of a point.

B. GET ELEVATION METHODS

1. Four Point Linear Interpolation

In of the JANUS terrain methodology, the bounding polygon (four posts) of the

queried position is used to estimate its elevation. Since four points do not define a plane,

some method must be found to determine the elevation of a general position bounded by

four known elevations. JANUS performs a linear interpolation on the four points [15].

Each of these points is an easily calculated distance from the position in question, and

each has a known height. More accurately, the distance between the point in question and

a projection of each of the bounding points onto a plane may be easily calculated. While

this method produces a reasonable approximation of the elevation at a general point it

imposes discontinuities in the terrain surface at the edges of grid cells. Since the original
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JANUS terrain elevation resolution was in discrete units (pentameters), these discontinui-

ties do not have a serious impact on the simulation.

Figure 7. The JANUS Get Elevation Method

2. The SE to NE Assumption Method

The ModSAF simulation uses a similar terrain grid and line of sight algorithm to

JANUS, but it does not estimate elevation in the same way. Instead ModSAF assumes a

line drawn from the south-east to north-west corner of each cell. This produces a regular

network of triangles. Instead of performing a least squares estimate for elevation the simu-

lation determines onto which triangle the point in question projects. It then uses simple

vector arithmetic to return an elevation [15].

Figure 8. The ModSAF Get Elevation Method

This approach is also applicable for use in an triangulated irregular network where

the facet surface is taken as the terrain surface. The method of determining the bounding

polygon list will differ significantly, however, between a regular and irregular representa-

tion. 
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3. The Nearest Post Method

Some simulations approximate elevation by using the nearest post to the point in

question. This method supports the Bresenham line of sight algorithm [12]. The great

advantage of this approach is the speed with which the elevation is estimated.

Figure 9. Nearest Post Get Elevation Method

This approach is identical to aggregating elevation data over a square “cell”

defined by the resolution of the model. A similar method is used to aggregate elevation

data over hexagonal arrays in some older simulations and board games [2].

4. The Southwest Corner Method

A simplification of the nearest post method is to return the elevation of the post in

the southwest corner of the bounding square. 

Figure 10. The Southwest Corner Get Elevation Method

This method offers the greatest speed advantage, but when used in a line of sight

algorithm will not necessarily return a reciprocal result. Line of sight may exist in one

direction and not in the other between two entities. [12]. 
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C. EXISTING LINE OF SIGHT (LOS) ALGORITHMS.

1. General

The algorithms described here are only a representative subset of those that have

been developed for use in constructive simulations. They are well described by Champion

[12, 15] as well as Hartman, Perry, and Caldwell [14] and the Military Operations

Research Analyst’s Handbook [2]. The selected descriptions are used in the reference

implementation of the API presented with this work. 

2. JANUS LOS

We will examine the JANUS line of sight algorithm first. The JANUS LOS meth-

odology strikes a reasonable balance between speed, fidelity, and simplicity. However, the

JANUS LOS algorithm is very closely coupled with the JANUS terrain representation.

Even though the algorithm and the representation are optimized for performance in the

JANUS simulation, LOS still takes a significant percentage of the available processor time

in a JANUS run.

This discussion of JANUS LOS will take three parts. First we must understand the

JANUS terrain. Second we make use of the JANUS elevation interpolation methodology

presented above. Finally, both of these discussions are used to build a description of the

JANUS LOS algorithm.

JANUS uses a regular (square) gridded network of elevation posts in a select set of

resolutions. Certain features within a JANUS terrain carry a parameter, PLOS, that

impacts the line of sight calculation. Probability of line of sight (PLOS) is a value from

[0,1] that is used in calculation to represent the probability that line of sight will exist

along a 25 meter path through this feature. Features that carry this parameter include veg-

etation and urban areas. Once geometric line of sight using only the terrain grid had been

confirmed, these probabilities are multiplied together to give a probability that line of

sight will exist during a specific time step in the simulation.

To determine the elevation of a specific point in the terrain grid JANUS uses the

four-point linear interpolation method described in the previous section. In order to carry
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out the JANUS LOS algorithm, this four point linear interpolation must be executed sev-

eral times.:

Figure 11. JANUS Line of Sight After Ref. [2]

Finally, in order to determine the probability that line of sight exists along a sensor

target (s-t) line for one time step in a JANUS simulation run, the JANUS LOS algorithm

goes through the following steps

For each iteration:

Calculate the X offset between sensor and target.
Calculate the Y offset between sensor and target. 
Determine the largest offset. 
Divide this offset value by the resolution of the terrain 
Round to the nearest integer. (This is the number of evenly spaced discrete

tests along the sensor target line that the algorithm will make).
Divide the s-t line into this number of equal length segments. 
Determine the slope of the s-t line.
Step through each of these points along the s-t line one at a time

At each step:

Determine the elevation of the terrain grid at that point by four-point linear
interpolation.

Compare this elevation with the elevation of the s-t line at this point.
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If the elevation of the point exceeds the elevation of the s-t line at the point
break and return “false.”

If the elevation of the point is less than the elevation of the s-t line at the
point then step to the next point.

Once all points have been checked, if geometric line of sight exists:

Determine if the path crosses any line of sight affecting features.
Determine the geometric distance traveled through any features along the

path. 
Divide these distances by 25 meters.
Determine the PLOS for each of these features.
Multiply through the PLOS times distance for each feature.

Return the result, a numerical value from [0,1].

Once the simulation obtains this value, it makes a draw from the uniform [0,1] dis-

tribution and returns true if that draw exceeds the computed PLOS. The existence or

absence of line of sight then impacts many other functions of the simulation such as acqui-

sition, firing, and visualization routines.

3. Dynamic Tactical Simulation (DYNTACS) Line of Sight

Figure 12. DYNTACS LOS After Ref. [2]
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DYNTACS LOS uses a method similar to JANUS. The DYNTACS terrain repre-

sentation is also a square grid of elevation posts. An identical four-point linear interpola-

tion scheme is used to determine sensor and target elevation. Instead of breaking the s-t

line into equal parts, DYNTACS LOS determines every point at which the s-t line crosses

a facet edge in the square lattice. The algorithm then determines these elevations by linear

interpolation on the two known elevation posts. These interpolations are deferred in code

until their values are needed. DYNTACS steps through these grid crossing points from

sensor to target and compares the sensor to target slope with the sensor to intermediate

point slope. If the slope from sensor to intermediate point ever exceeds the s-t slope, the

algorithm breaks out of the loop and returns false. If the algorithm steps through to the tar-

get it returns true.

4. Modular Semi Automated Forces (ModSAF) Line of Sight

ModSAF also stores terrain as a regular (square) gridded network of elevation

posts. However, ModSAF terrain has a modified view of these elevation posts. This

change allows for a smoother terrain sheet surface and eliminates the requirement for four-

point linear interpolation as in JANUS LOS. ModSAF LOS assumes a diagonal across

each square in the lattice of elevation posts. The orientation of this diagonal is northwest
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to southeast. This diagonal and the resulting two triangles approximate the actual terrain

surface. 

Figure 13. ModSAF Line of Sight After Ref. [2]

The LOS algorithm works in a manner similar to DYNTACS LOS except that the

algorithm considers all of the s-t line intersection points including the diagonals. In addi-

tion, the elevations for sensor and target are determined from their coordinate and the

three known points of the triangular facet on which they rest. ModSAF uses the same

slope comparison technique as DYNTACS to determine whether LOS is broken along the

s-t line. In general, the ModSAF calculation will run slower for a given terrain resolution

than either the DYNTACS or JANUS representations [12].

5. Bresenham Line of Sight

As noted, the Bresenham method uses the elevation of the nearest post to the sen-

sor and target, and the elevation of any grid cell through which the sensor-target line
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passes. This eliminates the need for all of the interpolation arithmetic used in the JANUS,

ModSAF, and DYNTACS LOS methods. 

Figure 14. Bresenham Line of Sight After Ref. [2]

The method is extremely fast, but suspect when used in a low resolution terrain

model [11]. The algorithm steps through the elevation cells and compares the elevation of

the cell to an elevation threshold calculated from the slope of the sensor target line. In

order to ensure reciprocal LOS consistency care must be take to “assign” cells consistently

when a point in question lies an equal distance from two cell posts.

6. ALBE Implementation OF Bresenham

The AirLand Battle Experiment (ALBE) simulation used a similar algorithm to

Bresenham line of sight except that it used the southwest corner elevation post. The gen-

eral Bresenham method uses the “post centered grid cell” approach. The disadvantage of

the ALBE implementation is that it permits non-reciprocal resolution of line of sight cal-

culations [11]. This means that far a given sensor-target pair, the existence of line of sight

from sensor to target is not sufficient to guarantee line of sight in the other direction. This

lack of reciprocal agreement is a consequence of the method used to determine step size.
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The step size can cause different elevation posts to be selected when stepping from sensor

to target than from target to sensor [11].

7. Other Geometric Approaches

The methods described above are representative of a large class of existing geo-

metric approaches to determining LOS. The implementations described in the next chapter

are algorithmically faithful to these. They differ principally in their use of double preci-

sion real values rather than integers. Some older representations used integer values and

integer arithmetic because of both computational speed advantages and the ease of map-

ping integer values to finite “pixel” displays. The API permits use of any algorithm. 

The preceding chapters form the background neccesary for the discussion in the of

the application programmers interface. Development of the API standard began after this

background was thoroughly examined in a search for the principal themes, structure, and

uses of terrain in simulation. The next chapter describes the API in detail.
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IV.  THE APPLICATION PROGRAMMERS INTERFACE

This chapter describes the API. First we show the differences between traditional

design and design using an API. Next we show block diagrams of the default and alterna-

tive internal structure of the API. Finally, we step through the definitions, data types, and

function calls required by the specification. This version of the API was used to write the

reference implementations developed in this thesis.

In traditional simulation design, the terrain component is tightly coupled to the

simulation. As illustrated in Figure 15, the simulation translates data about the environ-

ment into a run time representation that may be directly queried by the simulation during

execution.

Figure 15. Traditional Terrain Component Design
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By using the ModTerrain API to abstract terrain from the simulation as shown in

Figure 16, the developer is able to de-couple the terrain representation. This makes com-

pliant terrain representations interchangeable.

Figure 16. Simulation Design Using an API

The interface is a multi-level interface consisting of high and low level services.

Low level services are those that access the terrain representation directly while high level

services may be written in terms of low level services. The API provides the simulation

developer with a completely specified set of terrain accessing services that hide or abstract

from the simulation the details of the underlying terrain representation. As shown in Fig-

ure 17, the low level and meta services are the only services that must be implemented

with direct access to the underlying terrain representation. This permits code re-use by

allowing developers to implement alternative high level services strictly in terms of the

existing low level services with no need to change any reference to the basic terrain repre-

sentation.
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Figure 17. API Diagram

A. DEFINITIONS

In developing the API the development team attempted to use precise definitions

in the specification and to extend these definitions to descriptive names in well defined

data types. These data types may be implemented directly, or used to wrap existing data

types via pass through functions. The formal definitions are spelled out in the API func-

tional description document. In abbreviated form they are:

• position - the area or point occupied by a physical object.

• location - a position or site occupied or available for occupancy or marked by 
some distinguishing feature.

• coordinate - any set of numbers used in specifying the location of a point on a 
line, on a surface, or in space.

• distance - the degree or amount of separation between two points, lines sur-
faces or objects.

• direction - the line or course on which something is moving or is aimed or 
along which something is pointing.

• elevation - the height to which something is elevated or the height above the 
level of the sea.

• altitude - the vertical elevation of an object above a surface of a planet or natu-
ral satellite.
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• height - the distance from the bottom to the top of something standing upright 
or the extent of elevation above a level.

B. DATA TYPES

Data types reflect a compromise between compatibility with legacy systems and

openness. All of the data types specified in the API have direct correlation to similar data

types in existing simulation models and terrain representations. Mapping from the defined

specification data types to those used by a reasonably exhaustive range of simulations is

trivial. The implementer need only write a pass-through that can wrap his data in the API

compliant data types.

1. Mapping Between Data Types

Two way mappings without loss between externally defined data types may not be

possible in all cases. One example is a mapping from floating point value to integer value

and back. This can not be accomplished without loss of information, although it can be

accomplished with a reasonably arbitrary degree of precision. Likewise mapping between

supported feature sets in different representations without loss is not possible. A visual ter-

rain representation that supports dozens of different tree types to permit a realistic display

can be mapped easily to an analytic representation that only requires one tree type. But

mapping that one tree type back to the dozens supported in the visual representation is

impossible.

2. Coordinate

In this section we describe the API specification for a one dimensional coordinate.

We specify a 64-bit floating point value as the default standard for coordinates in compli-

ant terrain representations. We further specify the default unit of measure for coordinate as

the meter. The mapping arguments above are still relevant. The use of floating point val-

ues to represent the basic unit of spatial measurement is a significant design choice that

will require consensus. There are powerful numerical arguments for specifying integer

values and using a fine grain as default. 
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In fact the development of euclidean geometric schemes, libraries, and techniques

for use in computers has favored integer values because of two major advantages: the

speed of integer arithmetic, and the integer values uses in discrete graphics display. We

ultimately rejected specifying that coordinates be integer values with a default scale for

representation in centimeters. Setting aside questions of computational efficiency, the

most important consequence of constraining the representation of coordinate to integer

values is the possibility of eliminating all numerical ambiguity in computation, storage,

and translation from the representation. An important step in the standards nomination and

approval process, however, is building consensus. The current consensus among those

who have reviewed the ModTerrain draft standard is that the API specification should use

floating point values. In the end the flexibility of floating point values outweigh numerical

efficiency and implementation costs. 

3. Location

A two dimensional location is a pair of coordinates. Within the API, two dimen-

sional location is given the name location_type. Three dimensional location is given the

name location3d_type and the third dimension is of elevation_type rather than

coordinate_type. Higher dimension coordinate schemes are possible, but neither manda-

tory nor supported by the existing services in the API. We also specify location_list and

location3d_list types that are generally defined data structure containers holding linked

lists of their respective data types.

4. Distance

We specify a distance_type as a 64-bit float. This is a positive scalar value.

5. Direction

We specify a direction_type We specify a default scale for direction of radians

clockwise from “representational north.” We use a 64-bit floating point value to represent

direction. Since the range of possible direction values is only two times pi it appears that

this allows an unnecessarily fine representation of angles. The data type was selected for
37



consistency with coordinate and elevation and because there are conceivable high resolu-

tion requirements for very fine representation of angular measure. An example require-

ment is the accurate depiction of star fields in a rendered sky scene.

6. Elevation

The elevation_type is also a 64-bit floating point value. Elevation is distinguished

from coordinate constructively by being defined in a separate data type because the notion

of elevation is fundamentally different from the notion of coordinate. Specifying a loca-

tion in three dimensions requires three coordinates. Knowing the elevation of the terrain at

a point requires the two coordinates that specify that point, and the terrain elevation at that

point. 

7. Modifier

We specify a data type called modifier_type in order to permit methods that use or

return data from the constrained range [0,1]. Modifiers can represent probabilities, per-

centages, or efficiencies. The modifier data type permits the terrain to carry simple concise

information about its general impact on mobility, line of sight, degree of damage, and sim-

ilar uses.

8. Enumeration

We specify an enumeration data type. This is an integer value that can be used to

enumerate any general set of possible cases. The “enumeration value” to “enumeration

meaning” mapping is not specified in the API. This makes the enumeration_type an

extremely flexible tool within the API.

In the next section we describe the low level services that use these data types.
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C. LOW LEVEL SERVICES

1. General

Low level services are those that reach directly into the terrain representation and

return data in a form that is usable to the simulation at run time. The low level services

must be tightly closely coupled to the representation. A fundamental goal of the API

design was to limit and abstract the number of low level services required and supported.

By doing this we greatly simplify the task of generating, altering, and mapping between

compliant terrain representations. 

2. Open Terrain

This service returns a file_type. It is the primary means the simulation will use to

open the file containing a terrain representation for access by the API.

3. Close Terrain

In many languages efficient file and memory management require that files and

databases be explicitly “closed.” Pointers to their data are vacated and memory allocated

to storage and retrieval from within them are returned to the system for general use. Such

services will be provided here in an API compliant implementation.

4. Get Elevation

The get elevation method returns a value for the elevation of the underlying terrain

representation at an arbitrary two dimensional point. As noted this is a critical function. In

general the get elevation method must be written specifically to one or a most a small set

of alternative data representations. 

5. Get Nearest Elevation Post

The get nearest elevation post method is similarly tied to the underlying represen-

tation. It returns the nearest explicitly stored elevation value to a general point in question. 
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6. Get Elevation Post List

This method returns a list of elevation posts. The input parameters define a region

on the elevation surface. These parameters consist of a location list and a distance. It has

three required behaviors. 

• A query given a single location and a positive distance returns those posts con-
tained within a circle centered at the location and of radius given by the dis-
tance. 

• A query given two locations and a positive distance returns those posts con-
tained within a rectangle whose length is the distance between the two points 
and whose width is twice the distance value given. 

• A query given n > 2 locations and a distance >= 0 returns those posts con-
tained within the bounded area defined by those parameters.

7. Get Bounding Vertices List

This function returns the list of elevation posts that form the vertices of a polygon

that bounds a general point in question. For example in regular square grid this function

will generally return the four vertices of the square that bounds a point in question.

8. Get Feature List

This is the only function that permits the retrieval of data containing feature types.

Its input parameters are a list or location and a distance as above, and also a list of feature

types of interest. It returns the list of feature instances that are of a specific feature type

and located by the same geometry rules used in the Get Elevation Post List method. Fea-

ture type and feature instance are highly abstracted under the API. This function places no

requirements on either of these data types beyond the requirement that they be explicitly

located in the coordinate system that underlies the terrain representation.

Implementing these low level services often requires access not only to the terrain

data, but to information “about the terrain data.” Access to this meta data is provided

through services described below.
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D. META DATA SERVICES

1. Get Elevation Model Type

This service is narrowly defined by the API, and is fairly restrictive; however, the

impact on most implementations is minimal. The function returns an enumeration type

whose value indicates the type of elevation model underlying the representation according

to a standard enumeration scheme:

 

2. Get Elevation Resolution

This meta data service returns a distance type whose value represents the mini-

mum possible difference in elevation between any two posts. The API provides for vary-

ing resolution models by including a version of this function that takes location as an

argument and return resolution in the vicinity of that location. For many applications these

will return identical values. The developer is free within the API to define the vicinity of

the point in question. 

3. Get Horizontal Resolution

The API specifies similar functionality to provide a distance type whose value is a

measure of the horizontal resolution of the model. The notion of varying resolution is sim-

ilarly supported. In irregular networks the API requires return of an average resolution,

but places no restriction on the determination of this value.

Value Model Type

0 Unknown

1 regular gridded

2 irregular gridded

3 regular triangulated

4 triangulated irregular network

5 analytical

Table 1. Elevation Model Enumeration Scheme
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4. Get Terrain Boundary

This function gives the boundaries of the underlying terrain representation. Simu-

lation developers are free to define appropriate entity behaviors while they are operating

in an area that does not overly the terrain representation, but the API allows the simulation

to know the boundaries of this representation. In the default this function returns a list con-

taining two location types, the lower left and upper right corners. This list may be a series

of vertices of an irregular polygon in a more complex implementation. Likewise a devel-

oper may, for some reason return boundaries well within or well outside the actual extent

of included data. The contract between the terrain implementation and the simulation is

that data exist within these bounds.

5. Get X Offset & Get Y Offset

The get X and Y Offset functions facilitate mapping and translation requirements.

These may be simple translations from some physical two dimensional coordinate system

or they may be composed of highly complex Spherical trigonometric functions to permit

explicit mapping between planar and spherical surface models. The vast majority of

ground entity level simulation is developed for examination of areas in which the plane

approximation is valid. The API permits support of those instances where the model

developer requires a more complex surface. 

From the low level and meta services provided above, a default implementation of

the API will construct the basic and advanced high level services described in the next two

sections. The basic services provide the simulation answers to common geometry ques-

tions. The advanced services answer complex questions about movement and line of sight.

E. BASIC HIGH LEVEL SERVICES

1. General

In the reference, or default implementation of the ModTerrain API, the basic high

level services are built from low level services. They provide the developer with basic

information about spatial relationship and orientation. Developers are not bound by the
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default implementations. Alternative implementations using user defined high level ser-

vices and default or user defined low level services are all possible. 

Figure 18. Alternative Implementation of API

2. Get Distance

This returns the distance between any two points. The specification gives a default

implementation of euclidean two dimensional distance, but more complex implementa-

tions are permitted. 

3. Get Direction

This returns the horizontal direction in radians subtended by a segment between

two specified points and a line from the first point in the direction of a representational

north. The API gives a default of “grid North” as the base line. Most computer representa-

tions of angle have a default of “screen right,” or “grid West” as base angle. 

4. Get Slant Range

Slant range is the line of sight distance between two different three dimensional

locations.
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5. Get Slope

Within the API slope refers to the instantaneous or average slope of the terrain rep-

resentation. When this function is called with two location arguments, the slope between

those two points is returned. When it is called with one location type and one direction

type argument the instantaneous slope of the terrain representation at that location and in

that direction is returned.

6. Get Translated Location

This function permits the simple translation of a location along a distance and in a

direction. It returns a location type.

7. Get Material Type 

This function return an enumeration type of the surface material present at the

location given as an argument. Many movement algorithms account for varying surface

material types in order to model their impact on trafficability. The underlying terrain rep-

resentation must carry data about material type in order for the implementation to have

use.

F. ADVANCED HIGH LEVEL SERVICES

The advanced high level services are built from basic services, meta services, and

low level services and provide the developer with default implementations that may be

used at a higher level in the overall simulation methodology. The advanced high level ser-

vices are those that are most likely to be specific to an individual simulation, and are more

likely to be overwritten by a simulation designer. 

8. Line of Sight

This is the boolean value specifying whether unmodified geometric line of sight

exists between two locations.
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9. Probability Line of Sight (PLOS)

This is the probability [0,1] that line of sight exists between two locations. It per-

mits developers to use stochastic methods of determining line of sight for detection and

similar simulation functionality. 

10. Movement Modifier

Similar to PLOS, this returns a value from [0,1] that can be used in a general way

to modify the movement characteristics of an entity.

The next chapter describes the reference implementations developed by the author

as prototypes to test the API and as tools for further study. The chapter goes on to describe

some experiments developed to demonstrate the contrasting behaviors of the different

implementations.
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V.  REFERENCE IMPLEMENTATIONS

We now present three reference implementations of the ModTerrain API. The run

time terrain representation uses a regular gridded network for elevation geometry and a

simplified feature representation scheme. The reference implementation all use the same

feature services, and implement the geometric algorithms of the JANUS, ModSAF, and

CASTFOREM simulations. The reference is written in the JAVA programming language.

These implementations were specifically designed to support future work on the loosely

coupled components and web based simulation projects.

A. TERRAIN REPRESENTATION IMPLEMENTATIONS

As noted, legacy simulations are closely coupled with their terrain representations.

As a method of studying these representations, facilitating reuse at the code level, devel-

oping hybrid representations, and eventually paving the way for Loosely Coupled Repre-

sentation of Terrain, we implemented the run time terrain object in a JAVA hashtable

object. The hashtable is a data structure that consists exclusively of key-object pairs. The

data types used as the keys and the data types that store the information in the hashtable

are completely general. Access to these data is guaranteed through simple access methods

that follow a standard pattern. This permits the use of a small set of key types for storing

terrain information whose details may be unknown to the user. This run-time representa-

tion may be easily extended. These reference implementations and terrain data represent a

resource for further study and development.

Key String Object Description

“header” a ModTerrain header_type

“"xValues" An array of x values of the posts

“yValues” An array of x values of the posts

‘elevValues” A two dimensional array of elevation posts

Table 2. Run Time Representation Hashtable
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1. The Terrain Class Hierarchy

As noted, a terrain representation consists of elevation data, feature data, and meta

data. A ModTerrainData object contains variables and data structures to hold all of these

data types along with methods that provide the ModTerrain API implementation access to

these data. This object also includes a default (no parameter) constructor, a string con-

structor, and a constructor that takes an existing ModTerrainData object as its argument. 

The class files that were written specifically to implement the ModTerrain data

structure model are:

“horizontalResolution” A double value giving the distance between posts

“elevationResolution” A double value giving the resolution 

“xCellWidth” An integer giving the number of cells (E W)

“yCellWidth” An integer giving the number of cells (N S)

“supportedFeatureList” A vector of feature_type

“existingFeatureList” A vector of feature_instance_type

“elevationModelType” An integer giving the model type

Class Description

coordinate_type stores/provides access to one coordinate in a double value

date_type stores/provides access to a date as an integer value

datum_type stores/provides access to the datum as an integer value

direction_type stores/provides access to a direction as a double value [0, PI]

distance_type stores/provides access to a distance as a double value

elevation_type stores/provides access to an elevation as a double value

enumeration_type stores/provides access to the enumeration as an integer value

feature_instance_list_type stores/provides access to a list of feature instances

feature_instance_type stores/provides access to an individual instance of a feature

Table 3. Data Structure Implementing Classes

Key String Object Description

Table 2. Run Time Representation Hashtable
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2. Terrain Grid Implementations

The terrain grid is implemented as a set of arrays. Time constraints have limited

implementation only for regular gridded elevation representations. The extension to trian-

gulated irregular networks demands the implementation of efficient sorting routines that

can rapidly determine the specific triangular facet that contains an arbitrary point. It fur-

ther requires a partitioning scheme that prohibits simultaneous assignment of an arbitrary

point to more than one facet. The high level services developed in here could be used or

adapted for use with an alternative terrain representation.

3. Terrain Feature Implementations

Each terrain feature is a specific instance of a feature from the set of features sup-

ported by the representation feature enumeration. Examples of feature_type and

feature_instance_type are provided in the reference implementation.

feature_list_type stores/provides access to a list of feature types

feature_type stores/provides access to an individual type of feature 

file_type stores/provides access to a file as a String object

header_type stores/provides access to a terrain representation header

height_type stores/provides access to height as a double value

location_list_type stores/provides access to a list of (coord, coord) locations

location_type stores/provides access to a single location as (coord, coord)

location3d_list_type stores/provides access to a list of 3d coord elev) locations

location3d_type stores/provides access to a single 3d location as (coord, coord, elev)

modifier_type stores/provides access to a modifier as a double value [0,1]

name_type stores/provides access to a name type as a String object

vector3d_type stores/provides access to a 3d vector as three double values

version_type stores/provides access to a version type as an integer value

Class Description

Table 3. Data Structure Implementing Classes
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B. API IMPLEMENTATIONS

We created three reference implementations of the ModTerrain API. These imple-

mentations are faithful to the geometric algorithms used in the JANUS, ModSAF, and

CASTFOREM simulations respectively. The key numerical difference between these ref-

erences and the original simulations is that they all use the same run time representation

hashtable object whose numerical values are stored as double precision real numbers. In

their legacy code these simulations used lower precision numerical schemes because of

storage and computational efficiency constraints. They all use an identical simplified fea-

ture methodology that is patterned after the JANUS simulation. Each feature instance car-

ries a [0,1] value that may be used as in JANUS to calculate the probability that line of

sight exists across a path that contains the feature. Similarly each feature carries a [0,1]

modifier value that may be used to represent the impact that this feature has on mobility.

All of the implementations share common functionality for file handling and meta data

services. This is an example of the degree to which implementation of an API permits

code re-use. The following sections give an example of one use for these reference imple-

mentations. 

C. EXAMPLE EXPERIMENT

As an example of the type of research that the reference implementations permit,

we performed a simple experiment using instances of the JANUS and MODSAF imple-

mentations. The objective of the experiment was to determine if the line of sight algorithm

used effected the probability of line of sight in a simulation. We generated a bald earth run

time terrain representation from digital terrain elevation data, i.e. the data included no fea-

tures. The terrain was a square approximately 8,300 meters on each side. For each trial we

drew random sensor and target locations. For each of the sensor target pairs we tested for

geometric line of sight using the JANUS and ModSAF line of sight algorithms. We per-

formed 3000 trials to provide sufficient data for reasonable use of large sample approxi-

mations to the normal [16]. The null hypothesis under this experimental design was, “the
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ModSAF and JANUS algorithms will return true for line of sight with the same probabil-

ity under these circumstances” or more formally, 

We use the test statistic: 

where:

This large sample approach is taken from Devore [16]. The data are shown below

in Table 4. Substituting these data into the equations above gives a value for the test statis-

tic of -2.34, and under the conditions tested, we are able reject the null hypothesis at the

 level. This simple experiment confirms that the two algorithms generate out-

comes that are different enough to be significant. Although the magnitude of this differ-

ence is slight, the impact on a simulation that may calculate line of sight many thousands

of times per run would almost certainly be measurable as a “hotter” rate of detection.

While previous experimentation in this area was confounded by differences in underlying

terrain representation, each of these algorithms ran on numerically identical terrain. This

small experiment illustrates the type of analysis the prototype implementations permit. In

the next section we describe a more qualitative experiment undertaken to give insight into

the way different terrain methods “see” the elevation data.

JANUS MODSAF

Number Of Trials 3000 3000

Number Line of Sight = True 564 495

Sample proportion .179 .151

Table 4. Data from Multiple Line of Sight Tests
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D. COMPARISON OF TERRAIN SHEETS

We explored other experimental possibilities. One was the qualitative visual

inspection of terrain sheets generated from the elevation methods of the three implementa-

tions. We generated a run time terrain that consisted only of elevation data. These data

were themselves generated from the Digital Terrain Elevation Data (DTED) Level 1 data

set for the southeastern United States. We then used each of the implementations to sample

from these data at identical points offset from the explicit elevation posts. The sampling

rate was roughly four to one. We rendered the generated sheets using the three dimen-

sional chart generator provided with the S-Plus software package. 

Figure 19. Terrain Sheet Generated Using ModSAF

Figure 19 above shows the general faithfulness of the ModSAF view of the terrain

DTED level 1 data. The representation at least gives a visual perception of real terrain. 

Figure 20. Terrain Sheet Generated Using JANUS
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Figures 20 and 21 show views of the identical data as seen by the JANUS and

CASTFOREM elevation algorithms. These share the ModSAF faithfulness to the DTED

data, but at least appear blocky and less “real” to the observer.

Figure 21. Terrain Sheet Generated Using Nearest Post

Clearly each of the algorithms view identical terrain data differently enough to be

apparent in a casual visual inspection. We extended these visual assessments of “model

views” of the terrain to consider a terrain generated from a mixed trigonometric and expo-

nential level surface. In this analysis we examined the appearance of surfaces generated by

sampling the surface near its level of resolution. We compared this to the appearance of a

surface created by oversampling the data. Allow the scale of the existing terrain data to be

a square 10,000 meters on a side. Let this square be a 101 by 101 element array of eleva-

tion posts spaced evenly at 100 meter intervals north south and east west. If we sample a

section of the terrain surface at close to 100 meter intervals we note a somewhat different

view of the terrain than if we sample it at 25 meter intervals.

Figure 22. Analytic Surface Sampled at Terrain Resolution
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Figure 23. Analytic Surface Over Sampled at Four Times Terrain Resolution

The apparent difference in these views suggests experimentation on the impact of

variable elevation resolution on simulation performance. This and many other related

experiments are made possible by these reference implementations. The recommendations

made in the next chapter include suggestions for experimentation with the prototypes.   
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VI.  CONCLUSIONS AND RECOMMENDATIONS

This thesis provides a strong foundation for the ModTerrain project. It documents

the research, iterative design process, and prototyping that have taken the program to its

current state. The API is ready for full scale test as it moves toward release as an approved

modeling and simulation standard. 

The stand alone reference implementations permit analysis of different algorithms

and representations independent of existing simulations. Legacy code wraps the terrain

algorithms up in full simulations, while the prototype implementations permit controlled

examination. 

Rapid prototyping, evaluation, and side by side comparison similar to the example

experiments shown in the thesis are all possible using the reference implementation and

the tools available in Simkit. The JAVA programming language permits extension of the

API using a large library of existing, efficient, verified code. The recommendations given

here fall into three broad categories: recommendations for using the prototype implemen-

tations, recommendations for the API specification, and recommendations for extending

the components notion to other classes of simulation functionality through the employ-

ment of similar APIs.

A. USE OF PROTOTYPES

The prototype implementations developed for the thesis may be used in two ways.

First, they permit comparisons between the most widely used and understood terrain ser-

vices using identical terrain representations. The design of these experiments is greatly

simplified by the elimination of variations in performance due to numerical or machine

differences. One obvious type of experiment compares the speed of various algorithm.

Another possible experiment is a comparison of various algorithm results to measure-

ments on actual terrain as an extension to Champion’s work [15]. It is also possible to

develop hybrid methods such as one that uses the ModSAF elevation model, but follows

the JANUS feature model and line of sight algorithm.
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Further, the implementations are available to serve as terrain components for simu-

lation objects. In this way, researchers and students may explicitly use terrain in an entity

simulation without a detailed study and time consuming re-creation of this work.

Most importantly, the prototype implementations may be used to explore methods

of answering the line of sight question in a pure event step model. The algorithmically

simple Bresenham instance is an appropriate first choice for use in these explorations, but

the API structure permits its replacement with more complex algorithms as means are

developed to use terrain explicitly in event step combat modeling. The prototypes devel-

oped here are not the only instances of the API under development as part of the ModTer-

rain project, however.

B. NOMINATED TERRAIN STANDARD

The ModTerrain API has been nominated to the Army Modeling and Simulation

Office as a standard interface for abstracting the terrain component from simulations. The

project includes experimentation on at least two implementations of the API. This experi-

mentation will demonstrate that the principles demonstrated in this thesis can be scaled for

use in fielded, commercial simulations. Other standard nomination teams will benefit

from the experience of the ModTerrain team and the notion of abstracting entire simula-

tion components should be extended toward the ultimate goal of modular simulations that

the next section describes.

C. WEB BASED SIMULATION

The Loosely Coupled Components Research Group at the Naval Postgraduate

School has developed Java components to support operations research in future distrib-

uted military networks. The Java implementations of ModTerrain described in this thesis

are examples of loosely coupled components. The research group’s Web Based Simulation

project seeks to create a library of re-usable Java simulation components for distance

learning and to support further research. The ModTerrain API and Java implementations

can play a significant role as existing terrain components that can be used off the shelf or

modified to meet the needs of the group.
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APPENDIX A. THE JANUS TERRAIN 

This appendix describes in detail the way the JANUS terrain data structure is built.

The original code for JANUS was written in FORTRAN. In fact JANUS is a monumental

programming achievement in FORTRAN. The entire simulation and tool kit comprises

around 350,000 lines of code. An examination of the representation scheme illustrates the

close coupling of the terrain model to the simulation. The terrain representation is sparse,

and contains only those data needed to support the modeling methodologies used in the

simulation. At times this produces an analytical "coarseness" that is remarkably transpar-

ent to the user at run time.

Example: Some terrain features contain a set of four REAL variables that indicate

the amount of time [in seconds] to achieve an engineering fortification of Level 1, 2, 3, or

4. The notion of four, and only four, distinct levels of a parameter called "fortification"

indicates that the underlying simulation methodology is capable of modeling engineer

activity that increases survivability. But this model is fairly granular. Replacing the "forti-

fication" model with a more detailed one would require a major change to the terrain rep-

resentation data structure. 

A. JANUS REPRESENTATION SCHEME

JANUS stores terrain data in a large set of arrays. The most important array is the

terrain grid. This array does not explicitly contain the x and y coordinates, but rather a

one-dimensional array of “grid cell data words” for each post. Because the corner coordi-

nate is held in a variable and the terrain width (both in kilometers and “posts”) is also

maintained, the post by post x and y coordinates can be calculated efficiently “on the fly.”

This frees the representation from a large storage requirement. Each grid cell data word is

32 bits that are mapped as shown in Table 5 below. The last 16 bits in the word are used as

Bit Meaning

0-15 Elevation (pentameters)

Table 5. The JANUS Grid Cell Word
59



flags. They indicate only that a terrain feature of the type flagged is present in that grid

cell.

B. POLYGONAL FEATURES

Points associated with buildings and other polygonal terrain features are kept in a

pool of nodes. The integer variable KNUMTRNNODES specifies the number of nodes in

this pool. There are two REAL arrays of length KNUMTRNNODES (TRNODSX and

TRNODSY). These contain the X and Y Coordinates of the nodes. This node pool is a

complete list of the x and y coordinate of every corner of every polygonal feature in the

terrain representation. The number of buildings in the representation is stored in an inte-

ger, along with the number of the other supported features. For each polygonal type there

is a set of descriptive arrays that store data about the individual features. For buildings

these arrays are shown in Table 6.

16 Building Present

17 Fence Present

18 Road Present

19 River Present

20 Vegetation Present

21 Urban area Present

22 Generic String Present

23 Generic Area Present

24 Obstacle Present

25 Minefield Present

26 Breach Lane Present

27-31 Not Used

Table 5. The JANUS Grid Cell Word
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 Note that this scheme places a 255 vertex limit on individual buildings. This limit

is common to all of the polygonal features supported by the JANUS terrain. JANUS ter-

rain representations store an INTEGER that gives the number of poly-features in the file

and an array that has pointers to first and last feature of each type.

Primitive Type Meaning

BYTE Specifies the building "type"

INT*4 pointer to the node pool for the building outline

BYTE Specifies the building "type"

INT*4 pointer to the node pool for the building outline

BYTE number of nodes in pool for this building outline

INT*4 pointer for building's firing ports

BYTE number of nodes for firing ports

REAL These are the min & max x & y coordinates for the building

REAL 

REAL 

REAL 

Table 6. The Building Feature Type

BYTE Main type of terrain feature

1 = Not Used

2 = Fence

3 = Road

4 = River

5 = Vegetation

6 = Urban Area

7 = Generic String

8 = Generic Area

Table 7. Main Terrain Feature Types
61



C. FEATURE SUB-TYPES

There are also a complete set of arrays that permit the inclusion of feature sub-

types. Certain sub-types carry additional data elements pertaining to breach lanes, fortifi-

cation, extinction of LOS, and impact on mobility. Building sub-types are specified in an

array sized to the number of sub-types. This array caries the data shown in Table 9. 

Fence sub-types are similarly specified with the array data shown in Table 10.

Primitive Type Meaning

BYTE Sub-Type of terrain feature

INTEGER*4 Pointer into the node pool

INTEGER*2 Number of nodes for this feature

REAL These are the min and max x and y coordinates for this fea-
ture

REAL

REAL

REAL

Table 8. General Polygonal Feature Data

Primitive Type Meaning

REAL Total Height (meters)

REAL Fractional Area of exterior wall openings

REAL(4) Engineer minutes to reach fortification levels (1-4)

INTEGER*2 Number of Rooms

BYTE Construction Type (there can be 255 types)

BYTE Number of floors

BYTE Functional Classification

Table 9. Building Sub Types

Primitive Type Meaning

CHARACTER*16 ASCII name

REAL Total Height (meters)

Table 10. Fence Sub Types
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These arrays are further indexed by the number of breach lanes

Road sub-types are specified in an array sized to the number of supported sub-

types by the information in Table 12.

This array is also indexed by the three supported mover types with given speed

degradation factors.

REAL Oblique Angle (radians) (Maybe oblique angle)

REAL PLOS at right angle

Primitive Type Meaning

BYTE For each fence type 

0 = cross fence

1 = clear fence

INTEGER*2 For each fence type

time(minutes) to cross or clear fence

Table 11. Breach Lanes in a Fence Type

Primitive Type Meaning

CHARACTER*16 ASCII name

BYTE 1 = Primary, 2 = Secondary

REAL Road half-width (Kilometers)

Table 12. Road Sub Types

Primitive Type Meaning

BYTE Speed degradation factor by mover type 

1 = wheeled

2 = tracked

3 = footed

Table 13. Road Effect on Mover Types

Primitive Type Meaning

Table 10. Fence Sub Types
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River sub-types are specified in an array sized by the number of supported river

sub-types by

As with roads, river sub-types are indexed by mover type

Vegetation sub-types are specified in an array sized to the number of sub-types by

This array is also indexed by mover type

Primitive Type Meaning

CHARACTER*16 ASCII name

BYTE 1 = primary

2 = secondary

3 = filled (lake)

REAL River half-width (kilometers)

Table 14. River Sub Types

Primitive Type Meaning

INTEGER*2 Crossing times by

1 = wheeled

2 = tracked

3 = footed

4 = swimmer

Table 15. River Effect on Mover Types

Primitive Type Meaning

CHARACTER*16 ASCII name

BYTE Height (meters)

REAL PLOS per 25 meters

Table 16. Data for vegetation sub types

Primitive Type Meaning

BYTE Speed degradation factors for

Table 17. Vegetation Effect on Mover Type
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Urban area sub-types are specified in an array sized to the number of sub-types by

This array is also indexed by mover type

The JANUS terrain also supports features of type generic string and generic area.

These have similar data structures to the supported feature types and sub-types, and permit

a degree of flexibility in terrain representation by allowing the inclusion of generic fea-

tures not supported by the general enumeration.

1 = wheeled

2 = tracked

3 = footed

Primitive Type Meaning

CHARACTER*16 ASCII name

BYTE Height (meters)

REAL PLOS per 25 meters

Table 18. Urban Area Sub Types

Primitive Type Meaning

BYTE Speed degradation factors for

1 = wheeled

2 = tracked

3 = footed

Table 19. Urban Area Effect on Mover Type

Primitive Type Meaning

Table 17. Vegetation Effect on Mover Type
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APPENDIX B. MODTERRAIN SOURCE CODE

For the sake of brevity the JAVA source code for the reference implementation of

ModTerrain is not provided in this document. It is maintained by the Loosely Coupled

Components Group at the Department of Operations Research, Naval Postgraduate

School. The source code is licensed under the terms of the GNU General Public Licence.

Copyright (C) 1999 Dale L. Henderson
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.
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